Basic Focus

A Unified Theory of Resonance Shifts in Ultrasound Resonance Spectroscopy

Leigh L. Noble, leigh.noble@usma.edu Department of Mathematical Sciences United States Military Academy West Point, NY 10996

joint work with

Chi-Sing Man, mclxyh@ms.uky.edu Department of Mathematics University of Kentucky Lexington KY 40506

- Rolled metal sheets
- Homogeneous chemical composition
- Aggregates of cubic polycrystals
- Sheets exhibiting orthorhombic symmetry
- Linear elasticity and viscoelasticity

October 27, 2007	Society for Natural Philosophy, Houston TX	1/32	October 27, 2007	Society for Natural Philosophy, Houston TX	2/32

Motivation

Resonances can be produced by Electromagnetic Acoustic Transducers (EMATs) or Lasers

Manufacturing Scenario

EMATs

October 27, 2007

Society for Natural Philosophy, Houston TX

5/32

October 27, 2007

Society for Natural Philosophy, Houston TX

Equations of Motion

Isotropic homogeneous elastic material

 $\mathbf{T} = \mathbb{C}[E]$

$$\label{eq:cauchy} \begin{split} \mathbf{T} &= \mathsf{Cauchy Stress} \\ \mathbb{C} &= \mathsf{4th order elasticity tensor}, \ E &= \mathsf{infinitesimal strain} \\ \mathsf{Assume } \mathbb{C} \text{ enjoys major and minor symmetries.} \end{split}$$

 $\mathbb{C}[E] = \lambda tr(E)\mathbb{I} + 2\mu E$

where λ and μ are the Lamé constants

Furthermore, define
$$u_i(z,t) = \frac{1}{\operatorname{area}(D)} \int_D u_i(x_1, x_2, z, t) dA$$
.

 $\rho \mathbf{u}_{tt} = \mathsf{div} \mathbf{T}$

with initial/boundary values

$$\frac{\partial u_i}{\partial z}(0,t) = \frac{\partial u_i}{\partial z}(L,t) = 0, \quad u_i(z,0) = g_i(z), \quad \frac{\partial u_i}{\partial t}(z,0) = v_i(z)$$

October 27, 2007

Solutions

9/32 October 27, 2007 Society for Natural Philosophy, Houston TX

Isotropic material with internal friction

Society for Natural Philosophy, Houston TX

$$\mathbf{T} = \mathbb{C}[E] + \boldsymbol{\eta}[D]$$

$$\begin{split} \mathbf{T} &= \text{Cauchy Stress} \\ \mathbb{C} &= 4\text{th order elasticity tensor, } E = \text{infinitesimal strain} \\ \text{Assume } \mathbb{C} \text{ enjoys major and minor symmetries.} \\ \eta &= 4\text{th order effective viscosity tensor, } D = \text{stretching tensor} \end{split}$$

 $\mathbb{C}[E] = \lambda \operatorname{tr}(E)\mathbb{I} + 2\mu E$

where λ and μ are the Lamé constants.

Furthermore, define $u_i(z,t) = \frac{1}{\operatorname{area}(D)} \int_D u_i(x_1, x_2, z, t) dA$.

Equations of Motion

With Internal Friction

$$\rho \frac{\partial u_i}{\partial t^2} = C_{ijk\ell} \frac{\partial^2 u_i}{\partial z^2} + \eta_{ijk\ell} \frac{\partial^3 u_i}{\partial z \partial t^2}$$

with initial/boundary values

$$\frac{\partial u_i}{\partial z}(0,t) = \frac{\partial u_i}{\partial z}(L,t) = 0, \quad u_i(z,0) = g_i(z), \quad \frac{\partial u_i}{\partial t}(z,0) = v_i(z)$$

October 27, 2007

10/32

Solutions

Consider both internal friction and texture

 $\mathbf{T} = \mathbb{C}[E] + \eta[D]$

Details of Constitutive Relationship

In components,

$$\mathbb{C}(w)[E] = \lambda \operatorname{tr}(E)\mathbb{I} + 2\mu E + \beta \Phi[E]$$

becomes $C_{ijk\ell} = \lambda \, \delta_{ij} \delta_{k\ell} + \mu \left(\delta_{ik} \delta_{j\ell} + \delta_{i\ell} \delta_{jk} \right) + \alpha \Phi_{ijk\ell}$ where $\Phi_{1122} = W_{400} - \sqrt{70} W_{440}$, $\Phi_{1133} = -4 W_{400} + 2\sqrt{10} W_{420}$, and $\Phi_{2233} = -4 W_{400} - 2\sqrt{10} W_{420}$.

The $W_{\ell mn}$ are coefficients in this expansion of the Orientation Distribution Function w:

$$w(\psi,\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} W_{\ell m n} Z_{\ell m n}(\cos\theta) e^{-im\psi} e^{-in\phi}$$

where we follow Roe's convention [1960's] here.

• Let the $W_{\ell mn}$ coefficients vary through the thickness z

Texture and Internal Friction

Texture coefficients vary through the thickness

$$\mathbb{C}(w(z)) = \mathbb{C}(w_{isotropic}) + \mathbb{C}'(w(z) - w_{isotropic})$$

• Equation of Motion

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial}{\partial z} \left(C_{ijk\ell}(z) \frac{\partial u_i}{\partial z} + \eta_{ijk\ell} \frac{\partial^2 u_i}{\partial z \partial t} \right)$$

with initial/boundary values

$$\frac{\partial u_i}{\partial z}(0,t) = \frac{\partial u_i}{\partial z}(L,t) = 0, \quad u_i(z,0) = g_i(z), \quad \frac{\partial u_i}{\partial t}(z,0) = v_i(z)$$

14/32

Equations of Motion

A Perturbation Scheme

 $\rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial z} \left(C_{\rm iso} \frac{\partial u}{\partial z} + \eta \frac{\partial^2 u}{\partial z \partial t} \right) + \varepsilon \frac{\partial}{\partial z} \left(C_{\rm tex}(z) \frac{\partial u}{\partial z} \right)$

 $\rho \frac{\partial^2 u}{\partial t^2} = \mathscr{A} u + \varepsilon \mathscr{C} u.$

For each wave mode i = 1, 2, 3,

can be thought of as

Exercising weakly textured assumption:

$$\mathbb{C}(w(z)) = \mathbb{C}_{iso} + \varepsilon \mathbb{C}_{tex}(z)$$

Sheet with internal friction and inhomogeneous texture

For each wave mode i = 1, 2, 3,

$$\rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial z} \left(C_{\rm iso} \frac{\partial u}{\partial z} + \eta \frac{\partial^2 u}{\partial z \partial t} \right) + \varepsilon \frac{\partial}{\partial z} \left(C_{\rm tex}(z) \frac{\partial u}{\partial z} \right)$$

with initial/boundary values

$$\frac{\partial u}{\partial z}(0,t) = \frac{\partial u}{\partial z}(L,t) = 0, \quad u(z,0) = g(z), \quad \frac{\partial u}{\partial t}(z,0) = v(z)$$

October 27, 2007

Society for Natural Philosophy, Houston TX

17/32

October 27, 2007

Society for Natural Philosophy, Houston TX

18/32

Resonance Shifts

 $\omega_n^{(0)}$ is frequency in absence of attenuation and α_n is the attenuation

Perturbation Scheme (continued)

Writing
$$u = u^{(0)} + \varepsilon u^{(1)} + \varepsilon^2 u^{(2)} + \dots$$
, then
1 $u^{(0)}$ satisfies $\rho \frac{\partial^2 u^{(0)}}{\partial t^2} = \mathscr{A} u^{(0)}$ and
2 $u^{(1)}$ satisfies $\rho \frac{\partial^2 u^{(1)}}{\partial t^2} = \mathscr{A} u^{(1)} + \varepsilon \mathscr{C} u^{(0)}$,
3 $u^{(2)}$ satisfies $\rho \frac{\partial^2 u^{(2)}}{\partial t^2} = \mathscr{A} u^{(2)} + \varepsilon \mathscr{C} u^{(1)}$,
4 \dots , etc.

with appropriate boundary conditions:

1.
$$\frac{\partial u^{(0)}}{\partial z}(0,t) = \frac{\partial u^{(0)}}{\partial z}(L,t) = 0, u^{(0)}(z,0) = f(z), \frac{\partial u^{(0)}}{\partial t}(z,0) = g(z),$$
 1. $\frac{\partial u^{(1)}}{\partial z}(0,t) = \frac{\partial u^{(1)}}{\partial z}(L,t) = 0, \quad u^{(1)}(z,0) = 0, \quad \frac{\partial u^{(1)}}{\partial t}(z,0) = 0,$
 1. $\frac{\partial u^{(2)}}{\partial z}(0,t) = \frac{\partial u^{(2)}}{\partial z}(L,t) = 0, \quad u^{(2)}(z,0) = 0, \quad \frac{\partial u^{(2)}}{\partial t}(z,0) = 0,$
 1. $\frac{\partial u^{(2)}}{\partial t}(z,0) = 0, \quad u^{(2)}(z,0) = 0, \quad \frac{\partial u^{(2)}}{\partial t}(z,0) = 0,$
 1. $\frac{\partial u^{(2)}}{\partial t}(z,0) = 0, \quad u^{(2)}(z,0) = 0, \quad \frac{\partial u^{(2)}}{\partial t}(z,0) = 0,$
 1. $\frac{\partial u^{(2)}}{\partial t}(z,0) = 0, \quad u^{(2)}(z,0) = 0, \quad \frac{\partial u^{(2)}}{\partial t}(z,0) = 0,$
 1. $\frac{\partial u^{(2)}}{\partial t}(z,0) = 0, \quad u^{(2)}(z,0) = 0, \quad \frac{\partial u^{(2)}}{\partial t}(z,0) = 0,$
 1. $\frac{\partial u^{(2)}}{\partial t}(z,0) = 0, \quad \frac{\partial u^{(2)}}{\partial t}(z,0) = 0,$
 1. $\frac{\partial u^{(2)}}{\partial t}(z,0) = 0, \quad \frac{\partial u^{(2)}}{\partial t}(z,0) = 0,$
 1. $\frac{\partial u^{(2)}}{\partial t}(z,0) = 0,$

Resonance Shifts

Inhomogeneous Texture and Homogeneous Viscosity

If α_n is small $\omega_n = \omega_n^{(0)} - \frac{\alpha_n^2}{2\omega_n^{(0)}} + \varepsilon \frac{-1}{\rho L \omega_n^{(0)}} \int_0^L \cos \frac{n\pi z}{L} \frac{d}{dz} \left(C_{\text{tex}}(z) \frac{d}{dz} \cos \frac{n\pi z}{L} \right) dz$

Model C_{tex} as symmetric about z = L/2, then the frequency shift can be modeled as follows:

$$\frac{f_n}{n} - f_0 = -L\sqrt{\frac{\rho}{C_{\rm iso}}} \left(\frac{\alpha_n}{2n\pi}\right)^2 - \varepsilon \frac{1}{2L^2\rho} \sqrt{\frac{\rho}{C_{\rm iso}}} \int_0^{L/2} C_{\rm tex}(z) \cos \frac{2n\pi z}{L} dz$$

where $\omega_n = 2\pi f_n$ and $f_0 := \frac{1}{2L} \sqrt{\frac{C_{\rm iso}}{\rho}}.$

October 27, 2007

Society for Natural Philosophy, Houston TX

21/32

Resonance Shifts (con't)

A Resonance Shift Formula

$$\begin{pmatrix} f_n^{(S1)} \\ n \end{pmatrix} - f_0^{(S1)} \end{pmatrix} + \left(\frac{f_n^{(S2)}}{n} - f_0^{(S2)} \right) = \\ \frac{-1}{8\overline{f_0}(n\pi)^2} \left((\alpha_n^{(S1)})^2 + (\alpha_n^{(S2)})^2 \right) + \frac{2\beta\overline{f_0}}{n^2\pi^2\mu} \left(b + \frac{a}{2} - \frac{3a}{n^2\pi^2} \right)$$

Experiment to check the resonance shift formulas.

- Using model $W_{400}(z) = a \left(\frac{z}{L} \frac{1}{2}\right)^4 + b \left(\frac{z}{L} \frac{1}{2}\right)^2 + c.$
- This formula requires surface texture to be known.
- Measure $f_n^{(S1)}$, $f_n^{(S2)}$, and high resonances to determine f_0 .
- Use $\beta/\mu = -3.929$ per Huang and Man [2003].

October 27, 2007

Society for Natural Philosophy, Houston TX

Sample Preparation

(95% thickness reduction)

Annealed for 30 minutes at 600° F.

1 As received sample cold-rolled to ≈ 0.86 mm

Solution State 3 Stat

22/32

Experiments

- Measurements were made on C11000 copper (ETP) with Ritec RAM-5000 system
- In-house EMATs constructed for experiments

Attenuation Recovery

A Lorentz Line Shape function $|A|^2 = \frac{c}{\alpha^2 + 4\pi^2(f - \tilde{f})^2}$ is fitted to each measured resonance.

Society for Natural Philosophy, Houston TX

Results

Attenuation effects not significant

Another C11000 copper sample:

Small texture gradient

25/32

October 27, 2007

26/32

Conclusions and Further Work

- Experimental data is consistent with formula for resonance shifts for these particular samples.
- When texture gradient is strong and attenuation small, theory may be useful to detect through-thickness texture gradients.

Present theory: $\alpha_n \propto f_n^2 \rightarrow$ Future experimental considerations:

- Frequency range of these experiments too low for attenuation to be a factor.
- Need measurements at higher frequencies to verify the resonance shift formulas in presence of large attenuation.

Further theoretical considerations:

- Portion of theory on ultrasonic attenuation needs improvement to allow for effects of grain scattering.
- Perhaps a non-linear theory for attenuation is more appropriate.

Society for Natural Philosophy, Houston TX

29/32

October 27, 2007

NRC

SNP Organizers

Society for Natural Philosophy, Houston TX

Acknowledgements

This research was performed while Leigh Noble held a National

Research Council Research Associateship Award at the United

A special thank you to the conference organizers who arranged for

States Military Academy and the Army Research Lab.

travel support to attend this conference.

30/32

References

Man, Cai, Donohue, Fei

Anisotropic Ultrasonic Attenuation in an AA 5754 Aluminum Hot Band.

Aluminum Wrought Products for Automotive, Packaging, and Other Applications, TMS, 2006.

Huang and Man

Constitutive relation of elastic polycrystal with quadratic texture dependence.

J of Elasticity, 72(1):183–212, January 2003.

Noble, Man, Nakamura

Recovery of through-thickness texture profiles in sheet metals by resonance spectroscopy.

Review of Progress in Quantitative Nondestructuctive Evaluation, vol 23:1232–1239, AIP 2004.