Crystallographic Texture

Stress Distributions

Conclusion

Quantitative relationships between stress distributions, microstructure, and high strain rate performance of advanced ceramics: an interim report

> Leigh L. Noble, Davies Fellow leigh.noble@usma.edu

ARL Sponsors: James W. McCauley & Thomas W. Wright WMRD

November 1, 2006

Contribute to fundamental theory

Conditions: high strain rate, high stress, large strain **Events:** cracking and failure **Materials:** armor ceramics

Develop quantitative relationships

between response of ceramics and

- microstructures (texture, grain size, grain shape)
- stress distributions

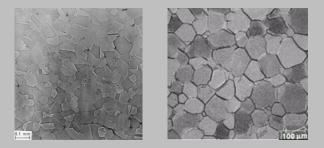
Conclusion

Today's Goals

Report on progress made in understanding affect of texture on internal stress and clarifying internal stress distributions

Outline

- Crystallographic Texture
 - Relationship to Stress
 - Thermo-anisotropic Elasticity
 - Visualization and OOF2
 - In Progress
- Ostress Distributions
 - Papers Reviewed Last Year
 - Research Direction
 - In Progress



Crystallographic Texture

Stress Distributions

Conclusion

Texture

Two different AION samples, scale 0.1 mm

- $\sigma = \mathbb{C}(w)[E]$
- Elastic constants C_{ijkl}
- Orientation distribution function w

November 1, 2006

Stress Distributions

Conclusion

Thermo-anisotropic Elasticity

Thermal contractions lead to fracture in brittle materials

- Equations of thermo-anisotropic elasticity
 - $\begin{array}{ll} \nabla \cdot \sigma = \mathbf{0} & \mbox{equilibrium} \\ \nabla \cdot h = \mathbf{0} & \mbox{balance of energy} \\ \sigma = \mathbb{C}[E] \mathcal{B}T & \mbox{stress-strain law} \\ h = -\kappa \nabla T & \mbox{heat conduction} \end{array}$
 - \mathcal{B} = thermal expansion tensor, κ = thermal conductivity tensor, h = heat flux, T = temperature
- Solved in 2-D by T.C.T. Ting (1996) using Stroh's formalism

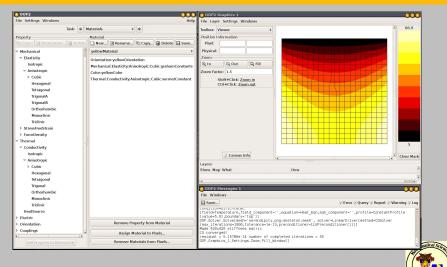
Conclusion

Visualization

What does the internal stress look like?

OOF2

- Object Oriented Finite element method in 2-dimensions
- Specifically designed for use on actual micrographs
- Heat & force balance equations (∇ · flux = applied force)
 Plane flux equations (out of plane components of flux = 0)
- Can be extended using C++ or Python



Crystallographic Texture

Stress Distributions

Conclusion

OOF2

available at http://www.ctcms.nist.gov/oof

November 1, 2006

14th Annual ARL/USMA Technical Symposium

7/16

Conclusion

In Progress

Visualize internal stress in AION

- Implement thermo-anisotropic elasticity equations
- Use material constants, orientation data, and micrograph from actual sample
- Use OOF2
- Extend as necessary

Crystallographic Texture

Stress Distributions

Conclusion

Stress Distributions

Crystallographic Texture

Stress Distributions

Conclusion

Last Year (con't)

Maximum stress alone is not best predictor of damage. Stress inhomogeneity is important too.

- After microcracking but before large cracks: high stresses shift rapidly from one location to another.
- As compressive stress increased: heterogenity of stress states increased.

November 1, 2006

Conclusion

Research Direction

Idea

- High stress next to low stress is a *critical event*
- Heterogeneity in internal stress states can predict imminent crack formation
- ⇒ Use internal stress state to predict response of ceramics to high strain rate, high stress, large strain conditions

Hypothesis

The heterogeneity of internal stress distributions, not simply exceeding a maximum stress, leads to cracking.

Conclusion

In Progress

Characterize stress states using fractal dimension

Definition (fractal dimension: box-counting dimension)

Given a self-similar object of N parts scaled by the ratio r from the whole, its fractal dimension is

$$D=\frac{\log N}{\log\left(1/r\right)}.$$

Multifractal formalism

- When different subsets of the object exhibit different fractal dimensions the object is considered to be **multifractal**
- The singularity spectrum fully describes a multifractal object

Summary

Effects of Texture

- Preferred crystallographic orientation and mechanical anisotropy of individual crystals affects stress response
- Working on numerical solution to thermo-anisotropic equations using OOF2 and "real" data to visualize affects of anisotropy on internal stresses under compression

Stress Distributions

- Simulations reported by others show stress heterogeneities prior to cracking
- Multifractal formalism under investigation as method to characterize heterogeneous stress states prior to cracking.

Crystallographic Texture

Stress Distributions

Conclusion

Acknowledgements

NRC

This research is made possible by a ARL-USMA Davies Fellowship, a postdoctoral fellowship through the NRC.

ARL Advisors

Thanks to Thomas Wright and James McCauley for their advice and support.

Many Others

Jeff Swab, Amy H Erickson, and other colleagues

Conclusion 0000

References

A. Tasdemirci and I.W. Hall

Experimental modeling studies of stress wave propagation in multilayer composite materials: Low modulus interlayer effects. J of Composite Materials, 39(11):981–1005, 2005.

🔈 T.C.T. Ting.

Anisotropic Elasticity: Theory and Applications Oxford University Press, 1996.

- D. Zhang, M.S. Wu, and R. Feng Micromechanical investigation of heterogeneous microplasticity in ceramics deformed under high confining stresses. Mechanics of Materials, 37:95-112, 2005.
- X.H. Zhang, F. Rong, Z.K. Jia, et al. Coupling effects of heterogeneity and stress fluctuation on rupture.

Theor. & Appl. Fracture Mechanics, 41:381-389, 2004.

15/16

November 1, 2006

Crystallographic Texture

Stress Distributions

Conclusion

-End of Slides-

Quantitative relationships between stress distributions, microstructure, and high strain rate performance of advanced ceramics: an interim report

Project Goal

To better predict fracture in advanced ceramics under high strain rate, high compressive stress, and large strains by studying microstructure and internal stress distributions

> leigh.noble@usma.edu MADN-MATH, USMA West Point, NY 10996-1905 USA

November 1, 2006