Problem Set 8<br>MA104, Spring 2006<br>DUE: April 12, 2006<br>Value: 40 points

Instructor: Dr. Leigh Noble
Assigned: April 4, 2006
Recall that this graded assignment must be accompanied by appropriate documentation as per the USMA Documentation of Written Work. The assignment is late if not turned in by the beginning of class on the due date. Please justify all answers by showing the important steps in your writeup; be sure to printout your Mathematica worksheet if you use Mathematica for your calculations.

1. Suppose that the directional derivatives of a function $f(x, y)$ at a particular point $Q$ are known in two nonparallel directions. Can you find $\nabla f$ at this point? In particular, consider the case in which $D_{\mathbf{u}_{1}} f(3,4)=23 / 10$ and $D_{\mathbf{u}_{2}} f(3,4)=7 / \sqrt{5}$ for $\mathbf{u}_{\mathbf{1}}=\langle 4 / 5,-3 / 5\rangle$ and $\mathbf{u}_{\mathbf{2}}=\langle 1 / \sqrt{5}, 2 / \sqrt{5}\rangle$. Try to determine $\nabla f(3,4)$.
2. Consider the function

$$
f(x, y, z)=x^{2}+2 y^{2}+z^{2}-y z
$$

and the level surface $f(x, y, z)=8$.
(a) Find a vector normal to the level surface at the point $Q(-1,2,1)$.
(b) Find an equation of the plane tangent to the level surface at the same point.
3. Consider the function

$$
f(x, y)=\frac{x}{2 y+x} .
$$

(a) What is the maximum rate of change of $f(x, y)$ at point $Q(1,4)$ ?
(b) From the same point, in what direction does $f(x, y)$ decrease most rapidly?
4. Three alleles (alternative versions of a gene) $\mathrm{A}, \mathrm{B}$, and C determine the four blood types $\mathrm{A}(\mathrm{AA}$ or AO$), \mathrm{B}(\mathrm{BB}$ or BO$), \mathrm{O}(\mathrm{OO})$ and AB . The Hardy-Weinberg Law states that the proportion of individuals in a population who carry two different alleles is

$$
P=2 p q+2 p r+2 r q
$$

where $p, q$, and $r$ are the proportions of $\mathrm{A}, \mathrm{B}$ and O in the population. Use the fact that $p+q+r=1$ to show that $P$ is at most $2 / 3$.

