Problem Set 7
 MA104, Spring 2006
 DUE: April 3, 2006
 Value: 40 points

Instructor: Dr. Leigh Noble
Assigned: March 28, 2006
Recall that this graded assignment must be accompanied by appropriate documentation as per the USMA Documentation of Written Work. The assignment is considered late if not turned in by the beginning of class on the due date.

1. $\left(7\right.$ points) $z(x, y)=\sqrt{1-x^{2}}+\ln \left(3 y^{2}\right)$
(a) What is the domain of $z(x, y)$?
(b) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ by hand.
2. (7 points) $g(x, y)=\frac{x-5}{2 y^{2}-3}-y^{2}+e^{-x^{2}}$
(a) What is the domain of $g(x, y)$?
(b) Find $g_{x x}$ and $g_{y y}$ by hand.
3. (18 points) $h(x, y)=\sin (\pi / 3)(x-5)^{3}+x y$
(a) What is the domain of $h(x, y)$?
(b) Find $\frac{\partial h}{\partial x}$ and $\frac{\partial h}{\partial y}$ by hand.
(c) Write the exact command(s) you would use to find $\frac{\partial h}{\partial x}$ and $\frac{\partial h}{\partial y}$ in Mathematica. (Hint: try ??D.)
(d) Find $h_{x y}$ and $h_{y x}$ by hand.
(e) Write the exact command(s) you would use to find $h_{x y}$ and $h_{y x}$ in Mathematica.
4. (3 points) The symbol $\frac{\partial f}{\partial x}$ means "the partial derivative of f with respect to x ". Our book indicates there are other notations which mean the same thing. List three of those other notations.
5. (5 points) On the bottom of page 759, our textbook discusses a geometric interpretation of partial derivatives. If $f(x, y)$ is some function of two variables, what is the geometric interpretation of $f_{x}(a, b)$ in your own words?
