Lesson 52 Problems from Quiz Game MA104, April 14, 2006

- 1. Which vector below is orthogonal to < 1, -1, 0 >?
 - (a) $\langle -5, 5, 1 \rangle$
 - (b) $\langle 3/2, 3/2, 2 \rangle$
 - (c) $\langle -1, 1, 0 \rangle$
 - (d) none of the above
- 2. If $f(x, y, z) = 5\sin(4\pi xy) + e^{x^2 + z^2}$ then what is $\frac{\partial f}{\partial x}$?
- 3. What is a vector equation of the line which goes through points P(5, -2) and Q(1, 4)?
 - (a) $\mathbf{r}(t) = \langle 5, -2 \rangle + t \langle 4, -6 \rangle$
 - (b) $\mathbf{r}(t) = \langle 1, 4 \rangle + t \langle -4, 6 \rangle$
 - (c) $\mathbf{r}(t) = \langle 5, -2 \rangle + t \langle -4, 6 \rangle$
 - (d) all of the above
 - (e) none of the above
- 4. If $\frac{\partial f}{\partial x}(x, y, z) = 5\cos(4\pi xy) (4\pi y) + e^{x^2 + z^2}(2x)$, then what is f_{xz} ?
- 5. For a particle traveling the path $\mathbf{r}(t) = \langle 5t^2 \sin(3t), 45 + 8t e^{2t} \rangle$, what is its speed at t = 0?
- 6. For a particle traveling the path $\mathbf{r}(t) = \langle 5t^2 \sin(3t), 45 + 8t e^{2t} \rangle$, what is its acceleration at t = 0?
- 7. For two nonzero vectors \mathbf{a} and \mathbf{b} , what can you conclude about the relationship $\mathbf{a} \times \mathbf{b}$ and \mathbf{a} ?
- 8. At the point (1,0), what is the direction of the greatest rate of change of $f(x,y) = 5x^2y + 6\sin(y)$?
- 9. For $f(x,y) = 5x^2y + 6\sin(y)$, what is the derivative at the point (1,0) in the direction of $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$?
- 10. What is the angle between (1,3,1) and (5,-1,2)?

Lesson 52 Solutions from Quiz Game MA104, April 14, 2006

- 1. (b) $\langle 3/2, 3/2, 2 \rangle$ because the dot product of this vector with the given on is equal to zero.
- 2. $\frac{\partial f}{\partial x} = 5\cos(4\pi xy) (4\pi y) + e^{x^2 + z^2}(2x)$
- 3. This question was phrased incorrectly during class...the equations I listed were all vector equations, not parametric equations as the question originally read. I meant to ask for vector equations.

Answer: (d) all of the above (Try plotting them with ParametricPlot[] or by hand if you don't believe me.)

- 4. $f_{xz}(x, y, z) = e^{x^2 + z^2} (2x)(2z).$
- 5. The particle's speed is $\sqrt{45}$. (Speed is the magnitude (length) of the velocity vector and the velocity vector is the derivative of the given position vector.)
- 6. The particle's acceleration is $\langle 10, -4 \rangle$. (Acceleration is the second derivative of position. For mathematics, "acceleration" refers to a vector quantity while a phrase such as "how fast was it accelerating" refers to the length of the acceleration vector.)
- 7. Answer: **a** is perpendicular to $\mathbf{a} \times \mathbf{b}$. (The cross product always produces a vector that is orthogonal to both **a** and **b**.)
- 8. From point (1,0), the direction of the greatest rate of change is (0,11) (The gradient (∇f) indicates the direction of the greatest rate of change.)
- 9. Answer: $55/\sqrt{29}$ (The dot product of the gradient and the unit vector in the direction of **v** is the directional derivative.)
- 10. Answer: around 77.3°. (This is calculated from the definition of dot product.)