Lesson 52

Problems from Quiz Game
MA104, April 14, 2006

1. Which vector below is orthogonal to $\langle 1,-1,0\rangle$?
(a) $\langle-5,5,1\rangle$
(b) $\langle 3 / 2,3 / 2,2\rangle$
(c) $\langle-1,1,0\rangle$
(d) none of the above
2. If $f(x, y, z)=5 \sin (4 \pi x y)+e^{x^{2}+z^{2}}$ then what is $\frac{\partial f}{\partial x}$?
3. What is a vector equation of the line which goes through points $P(5,-2)$ and $Q(1,4)$?
(a) $\mathbf{r}(t)=\langle 5,-2\rangle+t\langle 4,-6\rangle$
(b) $\mathbf{r}(t)=\langle 1,4\rangle+t\langle-4,6\rangle$
(c) $\mathbf{r}(t)=\langle 5,-2\rangle+t\langle-4,6\rangle$
(d) all of the above
(e) none of the above
4. If $\frac{\partial f}{\partial x}(x, y, z)=5 \cos (4 \pi x y)(4 \pi y)+e^{x^{2}+z^{2}}(2 x)$, then what is $f_{x z}$?
5. For a particle traveling the path $\mathbf{r}(t)=\left\langle 5 t^{2}-\sin (3 t), 45+8 t-e^{2 t}\right\rangle$, what is its speed at $t=0$?
6. For a particle traveling the path $\mathbf{r}(t)=\left\langle 5 t^{2}-\sin (3 t), 45+8 t-e^{2 t}\right\rangle$, what is its acceleration at $t=0$?
7. For two nonzero vectors \mathbf{a} and \mathbf{b}, what can you conclude about the relationship $\mathbf{a} \times \mathbf{b}$ and \mathbf{a} ?
8. At the point $(1,0)$, what is the direction of the greatest rate of change of $f(x, y)=$ $5 x^{2} y+6 \sin (y) ?$
9. For $f(x, y)=5 x^{2} y+6 \sin (y)$, what is the derivative at the point $(1,0)$ in the direction of $\mathbf{v}=2 \mathbf{i}+5 \mathbf{j}$?
10. What is the angle between $\langle 1,3,1\rangle$ and $\langle 5,-1,2\rangle$?

Lesson 52

Solutions from Quiz Game
 MA104, April 14, 2006

1. (b) $\langle 3 / 2,3 / 2,2\rangle$ because the dot product of this vector with the given on is equal to zero.
2. $\frac{\partial f}{\partial x}=5 \cos (4 \pi x y)(4 \pi y)+e^{x^{2}+z^{2}}(2 x)$
3. This question was phrased incorrectly during class...the equations I listed were all vector equations, not parametric equations as the question originally read. I meant to ask for vector equations.
Answer: (d) all of the above (Try plotting them with ParametricPlot [] or by hand if you don't believe me.)
4. $f_{x z}(x, y, z)=e^{x^{2}+z^{2}}(2 x)(2 z)$.
5. The particle's speed is $\sqrt{45}$. (Speed is the magnitude (length) of the velocity vector and the velocity vector is the derivative of the given position vector.)
6. The particle's acceleration is $\langle 10,-4\rangle$. (Acceleration is the second derivative of position. For mathematics, "acceleration" refers to a vector quantity while a phrase such as "how fast was it accelerating" refers to the length of the acceleration vector.)
7. Answer: \mathbf{a} is perpendicular to $\mathbf{a} \times \mathbf{b}$. (The cross product always produces a vector that is orthogonal to both \mathbf{a} and \mathbf{b}.)
8. From point $(1,0)$, the direction of the greatest rate of change is $\langle 0,11\rangle$ (The gradient (∇f) indicates the direction of the greatest rate of change.)
9. Answer: $55 / \sqrt{29}$ (The dot product of the gradient and the unit vector in the direction of \mathbf{v} is the directional derivative.)
10. Answer: around 77.3°. (This is calculated from the definition of dot product.)
